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The time evolution of the wave function provides a beautiful insight into the wave packet dynamics in the quantum theory. 

In this work, we study the wave packet dynamics of a particle inside a quantum well with one moving wall. Since one wall 

is moving with time, the eigen wave function and eigen energy of this system are time-dependent, which makes the time 

evolution of the wave packet in this system become much more complicated and interesting compared to the case in a 

quantum well with two static walls. It is shown when the wall is moving very slowly, fractional revival phenomenon of wave 

packet is shown to exist, but the full revival of the wave packet at one revival time is disappeared. With the increase of the 

moving speed of one wall, a peculiar revival pattern occurs, the center of the revival peak will shift accompanied by the 

motion of the wall, the wave function can not “clone” its initial wave function at all. Revivals are observed at some special 

decimal fractions of the revival time instead of rational fractions of the revival time appeared in the case of the static 

quantum well. Additionally, the initial momentum of the Gaussians wave packet can also affect the wave packet evolution 

and the autocorrelation of this system. The probability density distribution and the autocorrelation of this system are nearly 

unaffected for Guassian with an initial momentum smaller than the wall motion. However, when the initial momentum of

the Gaussians wave packet is larger than the wall motion, the amplitude in the probability density gets decreased, but the 

oscillatory structures become complicated; the interval between the adjacent revival peaks in the autocorrelation function 

decreases with the initial momentum.  The non-periodic revival pattern observed in this work can be considered as a 

consequence of the moving wall effect. We hope that our work can guide the future experimental study of the wave packet 

dynamics in the presence of a moving boundary. 
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1. Introduction 

 

Over the last several decades, the wave packet revival 

phenomenon in quantum systems has attracted a great 

interest. In the theoretical aspect, the temporal evolution 

of quantum wave packet has been studied using a 

pump-probe method of detection involving either 

time-delayed photoionization [1] or phase modulation 

[2-4], which has been widely used in atomic and nonlinear 

quantum systems [5-7]. Revivals in quantum systems were 

first studied in the Jaynes-Cummings model, describing a 

two-level atom interacting with a resonant monochromatic 

field [8]. On the other hand, the phenomena of wave 

packet revivals have been observed in many experimental 

studies, such as in Rydberg wave packets for hydrogen 

and alkali-metal atoms [9-12], in molecular vibrational 

state wave packet for Na2 and Br2 [13-14], etc. On the 

basis of the wave packet revival phenomena, some 

methods for isotope separation [15], and wave packet 

control [16-18] have been put forward. Systems exhibiting 

revival behavior are a fundamental realization of 

time-dependent interference phenomena for bound states 

with quantized energies in quantum mechanics and have 

wide applications in the field of physics and chemistry 

[19]. Application of wave packets to analyze the 

dynamical property of quantum systems is an important 

method to study the correspondence between the classical 

and quantum mechanics [20].  

Among all studies, the infinite square well potential 

is an elementary and important model to study the time 

evolution of the wave packet in quantum mechanics, 

because it provides a good description for 

one-dimensional bound state problem, such as in the 

semiconductor quantum well or in the billiard systems 

[21,19]. In these systems, the confined potential acting 

on the particle can be considered as an infinite square 

well. For the infinite square well system, the wave 

function and energy have simple analytic expressions, 

which can be obtained easily by solving the 

time-independent Schrödinger equation. In such system, 

the phenomena of full and part revival in the wave packet 

are well known. Such phenomena play a significant role 

in our understanding of wave packet evolution. In the 

previous studies, many researchers have studied the time 
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evolution of wave function in this system. For example, 

in 1997, Aronstein et al have studied the time evolution 

of a wave function in the infinite well using a fractional 

revival formalism [21]. They found a fractional revival of 

wave function occurs at times equal to rational fractions 

of the revival time Trev. At one revival time, the wave 

function can exactly reproduce its initial form, which is 

called a full revival. Later, Schmidt investigated the wave 

packet revival for a one-dimensional system with 

position-dependent mass inside an infinite well [22]. 

They found approximate full and fractional revivals in 

the wave packet, and the full revival takes place faster 

than the usual case. Furthermore, Vubangsi and their 

group have examined the wave packet revival dynamics 

for a quantum system with position and time-dependent 

mass in an infinite well [23]. Revival of wave-packet is 

shown to exist and partial revivals are different from the 

case with constant mass. 

In these early studies, the researchers all studied the 

wave packet dynamics in the infinite well with two static 

walls. Then what will happen for the wave packet 

dynamics of a quantum system in the infinite well with 

one moving wall? For the moving boundary problem, the 

temporal evolution of the wave packet becomes 

complicated. However, the quantum systems with 

time-dependent boundary conditions induced by the 

moving wall have attracted a lot of attention for several 

decades [24-37]. For example, in the early 1969, 

Doescher and rice investigated the system of a particle in 

a one-dimensional infinite square well potential with one 

expanding or contracting wall [24]. Canon derived the 

one-dimensional heat equation considering the moving 

boundary condition[25].Pinder has studied the 

contracting square well and analyzed the reason why the 

sudden approximation is inapplicability for contracting 

walls[26]. Scheininger and Kleber studied the quantum 

to classical correspondence for a particle confined in a 

quantum well with a linear wall motion and showed that 

a slight change in the boundary condition would lead to 

chaotic motion [27].Furthermore, Luz and Cheng used 

the semiclassical approximation to evaluate the 

propagators for moving hard-wall potentials [28]. 

Aslangul studied the time evolution of a particle in the 

sudden-expanded infinite well [29].Glasser et al have 

studied the time-dependent wave function for the 

quantum infinite square well with an oscillating wall [30]. 

Fojón’s group have used a numerical analysis to study 

the quantum square well with moving boundaries [31]. 

Mousavi investigated the quantum effective force in an 

expanding square-well potential [32]. Maritino et al 

studied the problem of a quantum particle that bounces 

back and forth between two moving walls [33]. Cooney 

studied the evolution of a wavefunction in an infinite 

well with moving walls. They derived the location and 

time of the revivals in the well of the initial wavefunction 

using Jacobi’s elliptic theta function [34]. As to the 

evolution and revival of the wave packet from the aspect 

of the autocorrelation, he did not give a discussion. Very 

recently, Duffin et al have numerically studied a particle 

in a box with oscillating walls[35]; Matzkin and their 

coworkers investigated the issue of a single particle 

nonlocality in a quantum system subjected to 

time-dependent boundary conditions[36,37]. In the above 

studies, the energy and wave function of a particle in an 

infinite well with one wall moving with a constant 

velocity have been put forward.  

Based upon these studies, we study the wave packet 

dynamics for a system with one moving wall in the 

quantum well. For simplicity, we still consider the walls 

of the quantum well are infinitely high. If one wall is 

moving, the width of the well grows wider, or narrower. 

Accordingly, the wave function of this system will grow 

or shrink and the energy of the particle will increase or 

decrease with time. In order to study the wave packet 

dynamics of this system, we should expand the initial 

wave function at arbitrary time in terms of these wave 

functions. The moving wall will affect the behavior of 

the wave packet in the quantum well through the 

following two aspects. First, if one wall is moving with a 

constant velocity, the value of the energy En is 

time-dependent, and the term corresponding to 

]-exp[
0

dEi
t

n will produce an extra dynamical phase 

shift in contrast to the case in the static quantum well. 

Second, the center of the probability density 

corresponding to each wave function will shift 

accompanied by the motion of the wall. The above two 

effects will all influence the time evolution and revival of 

the wave packet in the quantum well. It is found that the 

temporal evolution of the wave packet in this system is 

quite different from the case in a quantum well with two 

static walls, which is determined by the moving speed of 

the wall. It has been noted that as one wall is moving 

very slowly, the initial wave packet can be re-constructed 

partially after a period of time, but the full revival of the 

wave packet is disappeared. When the wall is moving 

very fast, the mirror revival or the fractional revival 

occurred at one-half and one-quarter fractions of revival 

times are no longer exist. Instead, revivals are observed 

for some special decimal fractions of the revival time. 

These non-periodic revival patterns are induced by the 

moving wall. This work can provide some references for 

the future experimental study of the wave packet 

dynamics in the presence of a moving boundary. 
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2. The wave function and classical motion of  

   a particle in the quantum well with one  

   moving wall  

 

2.1. The wave function  

 

Suppose a particle is confined in a quantum well 

with one moving wall. One wall in the well is fixed at 

origin and the other wall is moving with a constant 

velocity v along the x axis. At first, the width of the well 

is l0, at time t, its width becomes l: l=l0+vt, where v can 

be positive or negative. If v>0, the wall is moving 

rightward, which makes the quantum well get wider; 

however, if v<0, the wall is moving leftward, and the 

quantum well becomes narrower.  

The potential acting on the particle in this quantum 

well can be described as: 
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By solving the time-dependent Schrödinger 

equation: 
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with the boundary conditions 0)()0(  lxx  , 

we obtain the wave function of this system[38]:  
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where En is the energy: 
2

22

2ml

n
En


 . In contrast to the 

system in the static quantum well, the wave function and 

energy all vary with time. In the following calculation, 

we choose the natural units: 1 m . 

  These wave functions possess a sort of orthogonal 

normalized quality with the condition: 
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In order to study the time evolution of the wave 

packet in the quantum well with one moving wall, we 

choose the initial Gaussian wave packet as follows: 
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where P0 is the initial momentum, x0 specifies the mean 

position of the wave packet, and   determines the 

spread of the wave packet. In the following calculation, 

we choose x0=20 and 2 . )0,(x  can be 

expanded using the eigen wave function )0,(xn : 

     )0,()0,( xCx n

n

n           (6)                                 

Here Cn is the expansion constant: 

)0,()0,(*

0

0

xxdxC n

l

n  .Cn gives the projection of the 

initial wave function on the nth energy eigenstate. 

According to the quantum mechanics, |Cn|2 is the 

probability of measuring the system to appear in that 

eigenstate.  

At arbitrary time t, the wave function can be written 

as:  
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A widely used method for probing the evolution and 

revival of the wave packet dynamics is based on the 

autocorrelation function [39], which is directly related to 

the observable signal in the pump-probe type 

experiments for studying the wave packet dynamics. The 

autocorrelation function measures the overlap of the 

initial state wave packet )0,(x with the state ),( tx  

at some later time, which is defined as: 
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Using the autocorrelation function, the occurrence of 

revival and fractional revivals in the wave packet 

corresponds to the value of A(t) to its initial value of 
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unity and the appearance of relative maxima in A(t), 

respectively.  

It has been demonstrated in many researches that the 

important time scales of a wave function’s evolution are 

contained in the coefficients of the Taylor series of the 

energy levels En around the mean energy n0[19]: 
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where 
00

)/( nnnn dndEE  and so forth. For this system, 

only 
0nE and 

0nE  are unequal to zero, so we retain the 

first three terms. The first term 
0nE is a constant and 

induces no interference between different wave function, 

and it has no observable effect in | ),( tx |2 and |A(t)|2 , 

so this term can be neglected. Therefore, we define two 

time scales that depend on 
0nE and 

0nE  . One is 
clT , 

which is associated with the classical period of motion in 

the bound state. Another is the revival period 
revT , which 

governs the revival and fractional revival of the wave 

packet: 
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2.2. The classical motion of a particle in the  

    quantum well with one moving wall  

 

The classical motion of this system can be described 

as follows: Suppose the particle initially lies at the origin 

and travels with a constant speed k. If we take the 

particle’s energy to be 
2

0

22

0

20 l

n
EE n


 , then the speed 

of the particle 

0

0

l

n
k


 . In the following calculation, 

we choose 150 n . The particle moves freely in the 

quantum well, with the trajectories along straight lines 

inside the quantum well until they are reflected by the 

walls. After one reflection by the moving wall, the 

particle may return to the origin to form a closed orbit. 

Assuming the mass of the moving wall is far larger than 

that of the particle and the collision between the particle 

and the wall is completely elastic. The period of the 

particle in the quantum well depends on the moving 

speed and direction of the right wall. We take the wall 

moves rightward as an example. If the initial speed of the 

particle k is larger than the speed of the moving wall v, 

the particle will hit the moving wall after some time. This 

period of time is denoted as T1: 
vk

l
T


 0

1
. After 

collision with the right wall, the returning speed of the 

particle becomes: kret=k-2v. The returning time it takes 

the particle from the moving wall to the origin is T2: 

12
2

T
vk

k
T


 . Therefore, the first round-trip period of 

the particle along the x axis is: 
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l
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2

2
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After collision with the left wall, it turns back and begins 

the second round trip. If we use “j” as the number of 

collisions with the moving wall, then the j-th round-trip 

time of the particle in the quantum well can be described 

as: 
jvk

jl
T j

rt
2

2

0

0)(


 . If the moving wall moves leftward 

at first, we can use the same method to describe the 

motion of the particle. Such description of a classical 

particle has been proven useful for constructing exact 

propagators for path-integral solutions to infinite 

square-well system with one moving wall [24]. 

 

 

3. The evolution and revival of the wave  

   packet in the quantum well with one  

   moving wall  

  

In Fig. 1, we plot the three dimensional probability 

density 
22 |),(||),(| txctx n

n

n  in the quantum 

well with one moving wall. Suppose the initial 

momentum of the Gaussian wave packet P0 =0. The left 

column corresponds to the case with the wall moving 
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rightward, and the right column is the case with the wall 

moving leftward. It is shown when the wall is moving 

very slowly, v=0.00001, no matter the wall is moving 

rightward or leftward, the difference in the probability 

density distribution is very small, as we show in         

Fig. 1 (a-b). With the increase of the moving speed, the 

difference becomes obvious. When the wall is moving 

rightward, the probability density distribution region 

becomes wider, and the value of the probability density 

gets decreased.  

 

 

 

       
(a) v=0.00001                                 (b) v =-0.00001 

    

(c) v =0.01                                         (d) v =-0.01 

     
 

(e) v =0.1                                           (f) v =-0.1 

  Fig. 1. (color online) The three dimensional probability density 2|),(| tx versus x and t in the quantum well with one moving wall. 

The left column corresponds to the case with the wall moving rightward, and the right column is the case with the wall moving 

leftward. Suppose the initial momentum of the Gaussian wave packet P0 =0. The moving speed of the wall is given in each plot 
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As v=0.1, the probability density distribution is 

expanded in a large region and looks like a 

peacock spreading its tail (see Fig. 1 (e)). In contrast, 

when the wall is moving leftward, the probability density 

distribution region becomes narrower, and the value of 

the probability density gets increased. For example, in 

Fig. 1 (f), the probability density is limited only in a 

small region 0<x<10, and its value is very large. 

We next show in Fig. 2 the effect of the initial 

momentum in the Gaussian wave packet on the 

probability density distribution in the quantum well with 

one moving wall. Suppose the wall is moving with a 

speed v=0.01. Fig. 2 (a) shows the case with the initial 

momentum is less than the moving speed of the wall, 

P0=0.005, the probability density distribution is nearly 

unchanged compared with Fig.1(c), which is the case 

with zero momentum. As we increase the initial 

momentum, P0> v, its effect begins to take place. Fig. 2 

(b) shows the probability density distribution with P0 

=0.5, we found the value of the maximum recurrence 

peak gets decreased. As we further increase the initial 

momentum, the value of the recurrence peak continues to 

decrease, and the oscillatory structures in the probability 

density distribution gets much more complicated, as we 

can see from Fig. 2 (c-d).  

                            

     

(a) P0 =0.005                                     (b) P0 =0. 5 

  

(c) P0 =1.0                                        (d) P0 =1.5 

 

Fig. 2. (color online) The effect of the initial momentum in the Gaussian wave packet on the dimensional probability density 

in the quantum well with one moving wall. Suppose the wall is moving rightward with a speed v=0.01.The initial momentum 

of the Gaussian wave packet is given in each plot 
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In order to see the time evolution of the wave packet 

in the quantum well very clearly, we plot the 

two-dimensional probability density distribution at 

different time. Figs. 3 and 4 show the probability density 

distribution with the wall moving rightward for different 

velocity. In Fig. 3, the wall moves very slowly, 

v=0.00001. Fig. 3 (a) shows the probability density 

distribution of the initial wave packet, a sharp peak is 

centered at x=x0=20. The probability density distribution 

in the quantum well varies as time goes on. The blue 

dotted line in each subplot denotes the probability 

density of the initial wave packet, which is given for 

comparison.  

 

   
(a)t=0                              (b)t=T1                                     (c) 

)1(

rtTt   

 

                       (d) 8/revTt                   (e) 6/revTt               (f) 4/revTt   

  

(g) 2/revTt                             (h) revTt   

Fig. 3. (color online) The probability density distribution 2|),(| tx versus x in the quantum well with one wall moving very 

slowly. The moving speed of the wall is v=0.00001.The times are given in each plot 
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Fig. 3 (b) shows the probability density distribution 

at 21.2120
1 




vk

l
Tt . At this time, the particle hits 

the moving wall for the first time. It is shown the wave 

packet is expanded in the whole well. Several peaks 

appear in the probability density distribution. At the first 

round-trip period of the particle in the quantum well, 

41.424
2

2

0

0)1( 



vk

l
Tt rt

(Fig. 3 (c)), the adjacent peaks in 

Fig. 3 (b) are separated into distinct peaks. At 

55.15918/  revTt , where /4 2

0lTrev  is the revival 

period of the particle in the quantum well with two static 

walls, fractional revival of the wave packet appears, the 

position of the first peak is consistent with the initial 

wave packet, but its height gets reduced, as we can see 

from Fig. 3 (d). 

Fig. 3 (e) shows the probability density distribution 

at 6/revTt  , we find three identical peaks centered at 

x=10,50 and 80, respectively. The first peak deviates 

from the initial wave packet. At 4/revTt  , we observe 

two asymmetrical peaks in the probability density 

distribution, fractional revival of the wave packet appears 

again. As time continues, at 2/revTt  , there is a single 

reflected copy of the initial wave packet centered at x= 

80, which can be considered as a mirror revival of the 

wave packet. Finally, at one revival period, 
revTt  , 

there is only one peak localized at x= 20, but its width is 

a little wider and its height is lower than the initial wave 

packet. The exact full wave packet revival does not 

appear in contrast to the case in the static quantum well 

[19].  

Fig. 4 shows the probability density distribution with 

one wall moves a little fast, v=0.01. Fig. 4 (a) shows the 

probability density distribution when the particle hits the 

moving wall for the first time, i.e. at 

81.2160
1 




vk

l
Tt . At this time, the wave packet 

begins to collapse. At the first round-trip period of the 

particle in the quantum well 22.443
2

2

0

0)1( 



vk

l
Tt rt

, 

several distinct peaks appear, but none peak is consistent 

with the initial wave packet. With the increase of time, 

the probability density distribution region in the quantum 

well gets enlarged. At 8/revTt  , 4/revTt  and 

2/revTt  , the fractional  wave packet revival, 

symmetry revival and the mirror revival phenomena 

appeared in Fig.4 are no longer exist. At one revival 

period, 
revTt  , we still could not observe a partial 

revival, the wave packet is collapsed completely. As we 

can see from Fig. 4 (f) clearly. However, if we further 

subdivide the evolution time, as shown in Fig. 4 (g-l), we 

find some distinct revival peaks in the probability density 

distribution, and the first peak moves rightward relative 

to the initial wave packet. For example, in Fig. 4 (g), 

1897149.0  revTt , the center of the first peak is moved 

to x=24. With the increase of time, the first peak 

continues moving rightward. In Fig. 4 (l), 

10377815.0  revTt , the first peak is centered at x=40.7. 

This phenomenon is caused by the wall moving 

rightward in the quantum well. The non-periodic revival 

pattern is a consequence of energy dissipation due to the 

moving wall. 
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(a) t=0                    (b) 
)1(

rtTt                   (c) 8/revTt   

 

(d) 4/revTt               (e) 2/revTt                 (f) revTt   

 

(g) revTt 149.0              (h) revTt 186.0            (i) revTt 367.0  

 

(j) revTt 580.0             (k) revTt 632.0            (l) revTt 815.0  

 

Fig. 4. (color online) The probability density distribution 2|),(| tx versus x in the quantum well with one wall moving fast. 

The moving speed of the wall is v=0.01.The times are given in each plot 
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As a comparison, in Fig. 5, we calculate the 

probability density distribution with one wall moving 

leftward at a constant speed v=-0.01. Under this 

condition, the time when the particle first hits the moving 

wall is 80.207
-

0
1 

vk

l
Tt . The first round-trip 

period of the particle in the quantum well is 

13.407
2-

2

0

0)1( 
vk

l
Tt rt

. Fig. 5 (a) is the probability 

density distribution at 
1Tt  . The wave packet is 

collapsed and expanded in the whole quantum well. At 

the first round-trip period, six distinct peaks appear in the 

probability density distribution. Compared with the case 

that the wall moves rightward, the whole wave packet 

moves towards the left. As time goes on, partial revival 

of the wave packet takes place, but the first peak in the 

probability density distribution moves leftward relative 

to the initial wave packet, which is caused by the wall 

moving leftward in the quantum well. In addition, with 

the increase of the time, the probability density 

distribution region in the quantum well becomes 

decreased. For example, in Fig. 5 (f), 700055.0  revTt , 

the first peak moves towards the left wall and the 

probability density distribution is limited in a small 

region, 0<x<30.The initial wave packet can not be 

reconstructed completely. 
 

  

(a) t=T1                      (b) 
)1(

rtTt                 (c) revTt 19.0  

 

(d) 
revTt 265.0               (e) 

revTt 44.0                  (f) 
revTt 55.0  

Fig. 5. (color online) The probability density distribution 2|),(| tx versus x in the quantum well with one wall moving 

leftward. The moving speed of the wall is v=-0.01.The times are given in each plot 

 

 

Finally, we calculate the absolute square of the 

autocorrelation function of this system in a revival 

period: 2

0

22 |]exp[||||)(| 
t

n

n

n dEictA  . 2|)(| tA is also 

called survival probability, which is varied between 0 and 

1. If 2|)(| tA =0, which suggests that the state ),( tx  

has a shape that is distinct from the initial state )0,(x . 
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However, when the final state ),( tx  exactly regains 

the initial state )0,(x , 
2|)(| tA =1.  

 

Firstly, we suppose the initial momentum of the 

Gaussian wave packet P0=0.0.   

 

 
 

 

 

 

 

Fig. 6. Variation of the absolute square of the autocorrelation function of this system 2|)(| tA in a revival period. The moving 

speed of the wall is given in each subplot. Suppose the initial momentum of the Gaussian wave packet P0=0.0 
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 Fig. 6 (a) shows 2|)(| tA  in the quantum well 

with two static walls. It is found the survival probability 

is symmetric relative to the middle of well. At one 

revival period, 
revTt  , 2|)(| tA =1, an exact wave 

packet revival occurs. Fig. 7 (b) shows 2|)(| tA  in the 

quantum well with one wall moves very slowly along 

the +x axis, the speed of the moving wall is v=0.00001. 

Under this condition, the effect of the moving wall on 

the wave packet dynamics in the quantum well is very 

small. As 
revTt  , the difference of the above two 

plots can be neglected. The only difference takes place 

at 
revTt  . In Fig. 6 (b), 2|)(| tA <1, which suggests at 

one revival period, only partial revival appears in the 

wave packet when one wall in the quantum well is 

moving rightward. With the increase of the moving speed 

of the wall, its effect on 2|)(| tA becomes apparent. Only 

partial revival appears in the autocorrelation function and 

the full revival phenomenon in the wave packet does not 

appear. In addition, the interval between the adjacent 

revival peaks in the autocorrelation function increases 

with the moving speed. As we can see from Fig. 6 (c-d). 

Fig. 6 (e) shows 2|)(| tA  in the quantum well with one 

wall moves leftward, the speed of the moving wall is 

v=-0.01. In this plot, we find at 
revTt 44.0 , 2|)(| tA =1. 

But from the probability density curve shown in Fig. 5 

(e), we find at this time, although only one peak appears 

in the probability density, but the position of the peak is 

deviated from the initial wave packet. The full revival of 

the wave packet cannot be observed, which can be 

considered as a moving wall effect on the wave packet 

dynamics. 

 Next, we fix the speed of the moving wall, v=0.01, 

then we show how the autocorrelation function of this 

system vary with the initial momentum in the Gaussian 

wave packet.  

 

 

 

Fig. 7. Dependence of the absolute square of the autocorrelation function of this system 2|)(| tA in a revival period on the 

initial momentum of the Gaussian wave packet. The moving speed of the wall is v=0.01. The initial momentum of the 

Gaussian wave packet is given in each plot 
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The results are shown in Fig. 7. Fig. 7 (a) shows the 

autocorrelation function with the initial momentum P0 < 

v, P0=0.005. Its influence on the autocorrelation function 

is very small compared to the zero momentum case 

shown in Fig. 6 (d). The autocorrelation function 

decreases somewhat more rapidly form its initial values 

than in the P0=0 case as the initial momentum P0 > v, 

P0=0.5(Fig. 7 (b)). For still larger value of momentum, 

such as P0=1.0 (Fig. 7 (c)), the particle is moving away 

from its initial position very fast. It can be noted that the 

interval between the adjacent peak in the autocorrelation 

function decreases. In addition, only one recurrence peak 

appears obviously in the autocorrelation function. This 

figure suggests that we can control the evolution of the 

wave packet in the quantum well with one moving wall 

by changing the initial momentum of the Gaussian wave 

packet.    

 

 

4. Conclusions 

 

In summary, we have investigated the wave packet 

dynamics for a system with one moving wall in the 

quantum well. Revival and partial revival of the wave 

packet in this system are quite different from the case in 

the static quantum well, which depends on the moving 

speed of the wall sensitively. The fractional revival 

phenomenon of the wave packet is shown to exist when 

the wall is moving very slowly, but the full revival of the 

wave packet is disappeared forever. As we increase the 

speed of the moving wall, a peculiar revival pattern 

occurs, there are no partial revivals at half, a quarter…… 

of the revival time. Instead, partial revivals are observed 

at some special decimal fractions of the revival time. 

When the wall is moving left, the full revival is predicted 

through the auto-correlation function curve, but a plot of 

the probability density curve shows non-identical peak 

where full revival is expected. It turns out that the 

position of the revival peak deviates from the initial wave 

packet, which depends on the motion direction of the 

moving wall. These non-periodic revival patterns 

observed in this system can be considered as a 

consequence of the moving wall effect.  

It is interesting to study the wave packet dynamics in 

the presence of a moving wall since there is much work 

being carried out related to the moving boundary 

problem. Our work provides a better understanding of the 

temporal evolution of wave packets in the quantum well 

with one moving wall by comparing with a familiar 

system. In this work, we only deal with the simplest case 

of one wall moving with constant velocity. For more 

general surface motions, such as accelerating wall motion 

or oscillatory wall motion, the method used in this work 

is still suitable. In our future studies, we will study the 

case in which the wall moves accelerating or oscillating 

with time and compare our results with those given by 

Ref. [37-38]. We hope that our work can provide some 

references for the future experimental study of the wave 

packet dynamics for a system with a moving boundary. 
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